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Discussion of the indentation hardness of 
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On the basis of a theory previously developed by the authors for the indentation hardness 
of glass matrix, particulate composites, an attempt was made to interpret published hard- 
ness data for a ZnO-AI203-SiO 2 glass-ceramic in which gahnite (ZnAI204) crystal 
particles are dispersed in a glass matrix as a major crystalline phase. The elastic moduli for 
gahnite were estimated using both the bulk modulus-molar volume relationship and the 
density-Poisson's ratio relationship, established for oxide crystals. After determining the 
variation of the matrix Young's modulus with heat-treatment, the variation of the overall 
hardness with volume fraction of crystal phase as well as the crystal-size effect were 
discussed. The hardness behaviour of the present glass-ceramic could be interpreted well 
in terms of the properties and amounts of the constituent phases and the microstructural 
effects. 

1. In t roduct ion  
It is well-known that the indentation hardness of 
glass-ceramics is considerably higher than that of 
ordinary glasses [1]. However, little study has 
been made on the hardness of glass-ceramics in 
terms of their microstructure. Limited studies 
which have been presented are often compli- 
cated because of little or no microstructural 
characterization. 

The microstructure of partially crystalline 
glass-ceramics containing a large proportion of glass 
phase generally consists of dispersed crystalline 
particles embedded in a continuous glass matrix 
[2]. The indentation hardness data for this type 
of glass-ceramic have been reported by Stryjak 
and McMillan with comprehensive microstruc- 
tural characterization [3, 4]. They measured the 
variation of hardness with heat-treatment of a 
spinel transparent glass-ceramic based upon the 
ZnO-A1203-SiO2 system. They found that 
the hardness increased linearly with the volume 
fraction and particle size of the crystallites 
developed. Rice [5] discussed their experimental 
results and proposed ideas concerning effects 

of internal stresses on the hardness of crystallized 
glasses. 

Indentation behaviour of partially crystalline 
glass-ceramics having particulate microstructure 
must be different from that of fully crystalline 
glass-ceramics which can be regarded as poly- 
crystalline materials almost free of glass phase. 
Recently, the authors [6] proposed a theory of 
the indentation hardness of glass matrix, particu- 
late composites, based upon a microstructural 
viewpoint of flow in glass. In the present study, 
an attempt is made to interpret Vickers hardness 
data for the partially crystalline glass-ceramic 
published by Stryjak and McMillan [3, 4] on 
the basis of our theory. The variation of the 
overall hardness with volume fraction of crystal 
phase as well as the crystal size effect will be 
discussed. 

2. Theory 
Miyata and Jinno [6] analysed the indentation 
hardness of glass matrix, particulate composites 
regarding glasses as elastic-plastic materials on a 
microscopic scale. Based upon Marsh's theory [7] 

0022-2461/82/092693-07503.34/0 �9 1982 Chapman and Hall Ltd. 2693 



TAB LE I Microstmctural parameters, Young's modulus and Vickers hardness of a ZnO-A1203-SiO 2 glass-ceramic 
[3,4] 

Heat-treatment Vol % Particle size Mean free path Young's modulus Vickers hardness 
time at 950 ~ C* crystalline d (nm) between particles E (GPa) H (GPa) 
(h) phase ~ • (nm) 

(Base glass) - - - 41 -+ 2 6.56 -+ 0.03 
1 12.0 -+ 2.0 19.5 -+ 2.5 143 +- 7 56 +- 9 6.42 -+ 0.05 
2 14.0 -+ 2.0 21.0 +- 3.0 129 -+ 7 56.5 +- 8 6.60 -+ 0.06 
3 17.0 +- 2.5 22.0 -+ 4.0 107 -~ 8 55 +- 9 6.90 -+ 0.05 
4 18.0 +- 1.8 23.0 -+ 4.0 105 -+ 8 55 -+ 9 6.95 -+ 0.06 
5 20.0 -+ 1.5 24.0 -+ 4.0 96 -+ 8 56 -+ 6 7.04 -+ 0.06 
6 21.0 -+ 1.5 28.0 -+ 4.0 105 -+ 8 55 +- 8 7.02 -+ 0.04 

*The base glass samples were heat-treated at 800 ~ C for 4 h before treatment at 950 ~ C. 

of  indentation, expressions were formulated for 
indentation hardness o f  glass-matrix composites 
containing spherical crystalline or glass particles. 
When dispersed particles have higher elastic limit 
than a matrix (hard particles-soft glass matrix), the 
overall indentation hardness H can be expressed, 
for a dilute concentration of  dispersed phase, 
as [6] 

Hm 

( 1 x ! (1) 

with 
g = B o y m / H  m (2) 

15(1 --Vm)W 
Q = (3) 

(7 - 5Vm)/am + (8 -- 10Vm)~t p 

15(1 --Pro) 
~t - ( Q -  1), (4) 

7 - -  5 v  m 

where H m is the hardness of  the matrix without 
a dispersion, g is the shear modulus, v is the 
Poisson's ratio, Oym is the flow stress of  the 
matrix, ~b is the volume fraction o f  dispersed 
particles and B is an empirical constant involved 
in Marsh's expression for hardness [7] and equal 
to 0.6. The subscripts m and p refer to the matrix 
and particle, respectively. The constant K which 
depends upon H m and oy m can be estimated at 
0.3 to 0.4 for most glass matrices [6]. Equation 1 
predicts that the hardness of  this type of  compo- 
site increases with increasing second-phase particles 
when Q > 1 (i.e./lp >/~) .  

Oxide glasses generally have lower elastic 
modulus and lower indentation hardness than 
ordinary crystalline oxides. This suggests that 
partially crystalline glass-ceramics can be generally 
regarded as glass matrix composites containing 

hard crystalline particles and their hardness 
behaviour is expected to follow Equation 1. 

3. Published hardness data 
Stryjak and McMiUan [3, 4] measured the Vickers 
hardness, Young's modulus and other physical 
properties of  a ZnO-AI~O3-SiO2 glass-ceramic, 
derived from the glass of  composition 63.6 wt% 
SiO2, 17.3 wt% A12Os, 5.5 wt% ZnO, 4.5 wt% CaO 
and 9.1 wt% ZrO2. The base glass specimens were 
subjected to heat-treatment at 800~ for 4 h  and 
successively at 950 ~ C for 1 to 6h.  The micro- 
structure was characterized using X-ray diffraction 
and transmission electron microscopy, and the 
variation o f  microstructural parameters with heat- 
treatment are given. This glass-ceramic contains a 
large proportion of  glass phase and is composed of  
fine crystalline particles dispersed in a glass matrix. 
The major crystalline phase was identified as 
gahnite (ZnA1204) crystal by X-ray diffraction. 
Electron microscopy indicated that the gahnite 
crystals initially took the form of  spherical particles 
but structural changes caused the particles to take 
on a rod-shaped formation after a 1 h crystalliz- 
ation treatment at 950 ~ C. In Table I, the original 
data o f  the Vickers hardness, Young's modulus in 
bending, and microstructural parameters for this 
glass-ceramic are summarized [3, 4]. Note that the 
value of  particle size d was taken to be the average 
particle length and that the mean free path between 
particles was calculated by Stryjak and McMillan 
using ~ = d(1 -- $)/~b. 

4. Interpretation 
4.1. Preliminary considerations 
Stryjak and McMillan [3] observed that a small 
number of  tetragonal zirconia crystals were 
present as a secondary crystalline phase in the 
glass-ceramic. But to simplify the problem, it is 
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assumed here that the present glass-ceramic can be 
regarded as a two-phase composite consisting of 
gahnite crystals dispersed in a glass matrix. This 
means that the glass matrix containing small 
amounts of zirconia phase is assumed as homo- 
geneous glass phase. 

In the present glass-ceramic, gahnite crystals 
are present in the form of rod-shaped particles 
after l h  of heat-treatment at 950 ~ C [3]. Our 
theory is based upon a model consisting of 
spherical particles dispersed in a glass matrix. In 
the derivation of Equation 1, expressions for the 
effective elastic moduli of a two-phase compo- 
site containing spherical particles are used [6]. 
Strictly speaking, in the present application, 
Equation 1 should be modified for a composite 
containing prolate spheroidal particles. However, 
as indicated below, Equation 1 can approximate 
satisfactorily the indentation hardness of glass- 
matrix composites containing prolate particles 
unless they are extremely long, under the con- 
dition that Ep/E m is less than about 10. It has been 
shown that the overall elastic modulus of a two- 
phase composite containing randomly dispersed 
prolate spheroids is not appreciably different from 
that of a composite containing randomly dispersed 
spherical particles as long as Ep/E m <~ 10 [8, 9]. 
For example, in the extreme case where Ep/E m = 
10, the dispersion of prolate spheroidal particles 
having axial ratio c/a = 100 (where c is the length 
of unique semi-axis of spheroid and a is the 
spheroidal radius) results in only about 8% higher 
value for the overall Young's modulus than the 
dispersion of spherical particles [9]. This indicates 
that, as a first approximation, the expressions 
for the elastic moduli for a body containing 
spherical particle dispersion [10, 11] can be 
used for the case of relatively long prolate particle 
dispersion under the condition Ep/Em<~ 10. 
The same argument can be made for Equation 1 
which was derived using the elasticity equations 
of the composites with a dilute dispersion of 
spherical particles [6]. 

Table I indicates that the Young's modulus of 
the glass-ceramic remains almost unchanged during 
the course of heat-treatment from 1 to 6h, in 
spite of an increase in volume fraction of crystalline 
phase from 0.12 to 0.21. This suggests that the 
chemical composition of the glass matrix will 
change progressively as the volume fraction of 
gahnite phase increases, and that the Young's 
modulus of the matrix decreases as the compo- 

sition of the matrix changes. That is, the Young's 
modulus of the glass phase in each of the heat- 
treated samples is no more equal to that of the 
base glass. 

Equations 1 to 4 indicate that the information 
on the elastic moduli of the constituent phases of 
a composite is required to interpret quantitatively 
the hardness variation with the volume fraction 
of dispersed phase. Unfortunately, the elastic 
constants of both phases are experimentally un- 
known in the present case. In addition, elastic 
modulus values for gahnite are not available in 
the literature. However, it is possible to estimate 
reasonably the elastic moduli of gahnite crystal, 
using both the bulk modulus-molar volume 
relationship [12] and the density-Poisson's ratio 
relationship [13] established for oxide crystals. 
Once the elastic moduli of gahnlte crystal have 
been determined, those of the glass matrix may 
readily be calculated from measured Young's 
modulus of each glass-ceramic sample (Table I) 
using the expressions for the elastic moduli of 
a two-phase composite [10, 11]. 

4.2. Estimation of elastic modulus 
for constituent phases 

4.2. 1. Elastic moduli  o f  gahnite crystals 
Anderson and his co-workers [12] have shown 
that the bulk modulus K is very nearly inversely 
proportional to the specific molar volume v0 at 
ambient conditions for oxides as well as alkali 
ha]ides. That is, 

K v o  = C (5) 

where C is a constant which depends upon the 
crystal structure, valence product and a repulsive 
parameter. Equation 5 enables the bulk modulus 
K of oxides to be estimated if their molar volume 
and crystal structure are known. 

For spinel structure, C is estimated at about 
7.98 x 10 -3GPam 3 tool -1 [12]. The density of 
gahnite is reported as 4.62 x 103 kgm -3 [14]. If 
this density value is used, Vo for gahnite is evaluated 
at 3.97 x 10 -sm 3 mo1-1 . On the other hand, the 
cell size ao of gahnite is 0.8086nm [15]. The 
molar volume Vo calculated from the cell size 
ao is 3.98 x 10 -sm 3 mo1-1 . Using the latter value 
for Vo, the bulk modulus of gahnite is calculated 
at 200 GPa from Equation 5. The Poisson's ratio 
v of gahnite can be estimated at 0.28 from the 
density-Poisson's ratio relationship [13]. Using 
this value for p, the Young's modulus E and shear 
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T A B L E I I Data calculations 

Heat-treatment 
time at 950 ~ C 
(h) 

Calculated Era, H/H m and H m values 

Era* (GPa) H/Hm'~ Hm 5~ (GPa) 

1 47.5 -+ 8 
2 46.5 • 7 
3 43 • 
4 42.5 • 7.5 
5 42 • 5 
6 40 • 7 

1.14 • 0.01 5.63-+ 0.09 
1.17 -+ 0.01 5.64-+ 0.10 
1.23 -+ 0.02 5.61 -+ 0.13 
1.25 -+ 0.02 5.56 -+ 0.14 
1.29 -+ 0.02 5.46 • 0.13 
1.32-+0.02 5.32-+0.11 

*Calculated from Equations6 to 8 using measured 
Young's modulus (Table I) and assuming Kp = 200 GPa, 
up = 0.28 and v m = 0.25. 
"~Calculated from Equation 1. 
$ Estimated from calculated values for H/Hrn and measured 
hardness values (Table I). 

modulus /A of gahnite can be calculated at 264 
and 103 GPa, respectively. 

4.2.2. Elastic moduli o f  matrix glass 
As indicated earlier, the expressions for the 
elastic moduli of  a body containing spherical 
particles [10, 11] hold approximately for the 
case of  prolate spheroidal particles as far as they 
are not extremely long, under the condition that 
Ep/E m <~ 10. The calculated Young's modulus 
for gahnite is 264GPa, which is within 10 times 
the Young's modulus of  ordinary silicate glasses. 

Taking the values for Kp,  Pl~ and Ep as 200, 
103 and 264 GPa, respectively, and assuming that 
the Poisson's ratio of  the glass matrix, Vr, is 0.25, 
the elastic moduli of  the glass matrix, Kin,/A m and 
E m were calculated from the elasticity equations 
for spherical particle dispersion [ 10, 11 ]: 

K = K m + ~b Kp -- K ~  3Kin +--4-P-~rnJ (6) 

/A=/Arn+q)/[/A 2 ~ +  6(Km+2/Am)( -1- r  
p 5Pm(3Km + 4pro) ] 

(7) 
9Kp 

e - (8) 
3K + p  " 

The Young's modulus of  the matrix, Era, calcu- 
lated for each of heat-treated samples is listed in 
the first column of  Table II. 

4.3. Interpretaton of the Vickers 
hardness behaviour 

4.3. 1. Variation o f  the relative hardness 
Using the values for elastic moduli of  the con- 
stituent phases, estimated in the preceding section, 
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the relative hardness H/Hm was calculated from 
Equation 1 as a function of  heat-treatment t ime 
at 950 ~ C. The results are summarized in Table II. 
In this calculation, the value for K in Equation 1 
was taken as 0.35, the representative K value for 
ordinary glass matrices [6]. It  is found that E m 
decreases with increasing heat-treatment time 
but H/Hm increases during the course of  heat- 
treatment.  This calculated H/H m behaviour is in 
accord with the measured Vickers hardness behav- 
iour showing an increase with increasing heat- 
treatment time (Table I). The rate of  increase in 
calculated H/H m with increasing volume fraction 
of  crystal phase is slightly larger than that observed 
for measured hardness. This suggests that H m 
itself decreases during the heat-treatment process 
similarly to E m. Unfortunately, independent 
estimation of  H m cannot be made, but H m can be 
estimated if we use both the calculated values for 
H/Hm and the measured values for Vickers hard- 
ness. Results of  such estimation are summarized 
in the last column in Table II. It is seen that Hm 
decreases with increasing heat-treatment time, but 
the rate of  decrease in H m is small as compared 
with that in E m. 

4.3.2. Interpretation o f  the crystal-size 
effect 

In their discussion of the hardo.ess data of the 
present glass-ceramic, Stryjak and McMillan [4] 
proposed an experimental relationship, H ~ d 
(where d is the particle size). Let us now examine 
the way in which the overall hardness depends 
upon the particle size on the basis of  our theory. 
Equation 1 indicates that the hardness of  a com- 
posite has no basic dependence on the particle size 
and particle spacing. However, the hardness can be 
indirectly correlated with such microstructural 
parameters through a stereological relationship. 
For randomly distributed particles, the mean free 
distance between particles, X is given by [16] 

---- L3(1 --  ~)/r (9) 

where [ a  is the mean intercept length of  randomly 
distributed particles. Strictly speaking, f a  for the 
case of  a dispersion of  rod.shaped particles cannot 
be theoretically computed,  unless the length to 
radius ratio of  a particle is given. However, if we 
assume that the length of  rod-shaped particle is 
within about several times larger than its radius, 
/~a can be taken to be approximately equal to the 
length of  the rod-shaped particle [16]. Judging 
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Figure 1 Interpretation of particle-size dependence of Vickers hardness of a ZnO-A1203-SiO2 glass-ceramic [3, 4]. 
(a) Experimental hardness data plotted against the particle size d. (b) Plots of theoretical H/H m against d curves drawn 
for various volume fractions of dispersed crystalline phase. 

from the electron micrographs taken by Stryjak 
and McMillan for the present glass-ceramic [3], this 
assumption seems to be valid, and hence their 
calculation of X, using X = d(1 --~b)/~ (Table I), 
may be justified. Putting L3 ~ d, we obtain from 
Equation 9 

d/X 
0 -  l + dlX " (10) 

Substitution of Equation 10 into Equation 1 
enables the hardness to be expressed in terms of 
d/X. 

Fig. 1 shows an interpretation of particle size 
dependence of Vickers hardness of the present 
glass-ceramic on the basis of our theory. In Fig. la, 
experimental hardness data are plotted against the 
particle size d; the solid curve indicates the line 
drawn by Stryjak and McMillan [4] who suggested 
a d +1 dependence of hardness. Equation 1 predicts, 
on the other hand, that H/Hm is independent of 
the particle size and interparticle spacing if the 
volume fraction of the dispersed particles is kept 
constant. In Fig. lb, the theoretical H/H m curve 
is drawn, with particle size d as abscissa, for 
various volume fractions of crystalline phase listed 
in Table I; a solid circle represents the particle size 
observed for each volume fraction. Note that the 
variation of d is accompanied by the variation of 
(and also by the variation of X) in the present 
glass-ceramic. Fig. lb suggests that H/Hm increases 
following the broken line, as the particle size 
increases. Taking into account the fact that H m 
varies only slightly with heat-treatment (Table II), 
it can be said that this theoretical H/Hm behaviour 
explains quite well the experimental hardness 

variation with d shown in Fig. 1 a. Thus it may be 
concluded that the particle size dependence of the 
hardness is not a basic character but it appears 
indirectly through the stereological relationship 
expressed in Equation 9 or 10. 

4 . 4 .  C o m m e n t s  o n  t h e  i n t e r p r e t a t i o n  
b y  R i c e  

Rice [5]  t r ied  to  in te rp re t  the hardness data fo r  

the present glass-ceramic, analysing the effects 
of internal stresses on the hardness of crystallized 
glasses. However, it seems that his analysis includes 
several ideas whose validity should be examined. 

First of all, Rice assumed a priori that the 
hardness of a two-phase composite is additive, 
that is: 

H = (1 -- r  m + qSHp. (11) 

This linear equation may certainly hold for the 
hardness of two-phase composites with layered 
structure. However, the application of Equation 11 
to the hardness of particulate composites seems 
to be too rough for quantitative calculations. In 
general, such a simple additive rule is only appli- 
cable to structure-sensitive properties of particulate 
systems in which either the volume fraction of 
dispersed phase and/or the difference in specific 
properties under consideration between phases are 
very small. A similar argument may also be made 
for Rice's assumption that internal stresses due to 
thermal expansion mismatch are linearly super- 
imposed on to the overall hardness. However, the 
way in which the internal stresses influence the 
overall hardness seems to be a subject which must 
be further examined. 
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Secondly, the present authors feel that the 
magnitude of internal stresses is overestimated by 
Rice. He roughly estimated the internal stresses 
based upon a slab model and extended it to a 
three-dimensional case. Rice gave the following 
equations for average internal stresses in particle 
and matrix: 

A~/XT 
~ ~ 2 ~ p  (12) 

AcCxT 
"~m ~ - - E r a -  (13) 

2 

The theory of the internal stress system around 
and within particles in particulate composites is 
well established. For the case of a single, spherical 
particle of radius R in an infinite isotropic matrix, 
a uniform stress o arises within the particle and 
radial and tangential stresses o f - -c rRa/ r  3 and 
oRa/2r a, respectively, arise around the surround- 
ing matrix, where r is the distance from the centre 
of the particle to a point in the matrix [17-19]. 
These equations represent a satisfactory approxi- 
mation for the internal stresses set up during 
cooling of the composite containing low concen- 
trations of particles. The stress o is given by 

o = AotAT/(1 + v m + 1 - -  2vpl (14) 
/ \2e ra  /rp ] '  

where As = % - -  cz m and AT is the temperature 
cooling range over which the matrix plasticity is 
negligible. Let us now roughly estimate the internal 
stress within the particle, op, using Equation 14 and 
compare it with Rice's estimation (Equation 12). 
If we assume that the Poisson's ratios of the 
matrix and particle are equal and take the value 
of 0.25, we obtain from Equation 14 

% = o  

2EmEp Ao~AT 
1.2sEp + L'm 

4 
= ( 1  1.25Ep/Em) [AaAT ' + [-T-vo) (15) 

For the case where ED/E m > 2.4, it can be shown 
that 

4 
< 1 .  

1 + 1.25Ep[Em 

Thus, when Ep/E m is larger than 2.4, Equation 15 
gives smaller values for the internal stress within 
the particle than Equation 12. For example, when 
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Ep/E m = 6 (representative Ep/E m ratio for the 
present glass-ceramic), 

% =  0.47 ( A - ~ E ; )  

which is less than one-half the estimation by Rice. 
Further, his estimation for AT (1030 C) may also 
contribute to an overestimation of the internal 
stresses. AT should be taken, not from the crystal- 
lization temperature, but from the nucleation tem- 
perature (800 ~ C) which is considered to lie within 
the temperature range corresponding with viscos- 
ities of 1011 ~ 1012P [20]. 

Finally, it should be noted that, for the values 
of H m and Era, Rice took the values for the base 
glass composition. However, these estimations 
seem to be incorrect for the present case. As 
discussed earlier, the hardness and elastic modulus 
of the glass-ceramic samples subjected to various 
heat-treatment times are no longer equal to those 
of the base glass, since the chemical composition 
of the glass matrix must vary progressively as the 
volume fraction of gahnite phase increases. This 
was already pointed out by McMillan and Stryjak 
[21] in their reply to the comment by Rice. 

Thus, although we suppose that internal stresses 
may have a possible effect on the hardness of 
particulate composites, it is unlikely that the hard- 
ness of the present glass-ceramic is effectively 
influenced by the internal stresses in the manner 
suggested by Rice. 

5. Concluding remarks 
On the basis of our theory for the indentation 
hardness of particulate composites, the published 
hardness data of a glass-ceramic with particulate 
microstructure could be interpreted well in terms 
of the properties and amounts of the constituent 
phases and the microstructural effects. However, 
it is probable that internal stresses might have 
some effect on the indentation hardness. This 
possible effect should be then further analysed 
to examine the degree and manner in which the 
internal stresses contribute to the overall hardness 
of particulate composites. 
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